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ANALYSTS OF HYPERVELOCITY PERFORATION
OF A VISCO-PLASTIC SOLID INCLUDING THE EFFECTS
OF TARGET-MATERTAL YIELD STRENGTH

By Robert G. Thomson
Langley Research Center

SUMMARY

A visco-plastic flow theory for the solution of hypervelocity perforation
of thin plates has been investigated. A short-time analytical solution of the
governing equation including the effects of yield strength of the target mate-
rial was obtained and expressions were derived for the velocities, displace-
ments, strains, and strain rates present in the target material during hyper-
velocity impact. In addition, pertinent parameters have been varied and a
comparison has been made with the solution in which the yield strength was neg-
lected. The results indicate that the velocities, displacements, and stresses
determined from the present solution are at times markedly different from the
results obtained when the yield strength is neglected. The effects on the radius
of perforation of the plate material when the yield strength is included were
found to be not as significant as those of the solution neglecting target yield
strength and resulted in little variation in the computed perforation radii.

INTRODUCTION

A visco-plastic flow theory was first proposed for the hypervelocity per-
foration of thin plates by rigid cylindrical projectiles by F. A. Bakhshiyan in
1948. (See ref. 1.) 1In this analysis a circular cylindrical projectile was
considered to impact upon a thin target plate and the resulting radial visco-
plastic boundary was treated as time dependent. The solution presented, however,
was limited to the special case of an infinite mass projectile. 1In references 2
and 3 an analytical solution was obtained for a problem similar to that of ref-
erence 1 except that the yield strength of the target plate was taken to be zero
(that is, the visco-plastic boundary was taken to be at infinity) and the pro-
jectile mass was treated as finite. The yield strength of the target material
was introduced later in this analysis to establish a separation criterion for
perforation. An approximate two-dimensional analysis of the impact problem as
stated in reference 2 is presented in reference 4. This solution indicates
that the radial velocities are about one order of magnitude less than the axial
velocities and thus helps to justify the use of a one-dimensional approach.



An extension of the work presented in references 2 and 3 is presented in
reference 5 in which an attempt is made to include the effects of target mate-
rial yield strength in the governing differential equation and associated
boundary conditions. The results of the analysis are given in finite series
form and a parametric study is presented in which the effects of variations in
the pertinent parameters on the radius of perforation are determined. The
solution as given in reference 5, however, does indicate that for the case of
the infinite mass projectile, the velocity of the projectile decreases slightly
after impact. This result is probably due to the fact that only a finite num-
ber of terms from an infinite series was used.

In the present analysis an analytical solution to the problem of a rigid
projectile of finite mass impacting upon an infinite plate is obtained in which
yleld-strength considerations have been included in both the analysis and in
the determination of the separation criterion. The solution obtained in the
present report differs from that reported in reference 5 even though the basic
problem is identical. The present solution agrees in the limiting case when
the yield strength is set equal to zero with the solution presented in refer-
ences 2 and 3 in which yield strength was neglected. In addition, the expres-
sion for velocity will limit, in the case of the infinite mass projectile, to
the condition that the velocity of the projectile remains constant after impact.

The present report also shows how the effects of including yield strength
in the analysis compare with the results obtained for the same conditions when
yield strength is neglected. Some pertinent parameters such as initial velocity
and mass of the impacting projectile as well as the plate thickness and viscos-
ity are varied in order to study their effects on the displacement, velocity,
strain, and strain-rate distributions, and on the radius of perforation as com-
puted with and without target yield strength.

SYMBOLS
A,B coefficients of Bessel functions
a radius of projectile
Cy dynamic ultimate yield strain in shear
erf error function
erf’ derivative of error function
erfc complementary error function
go initial projectile velocity



h plate thickness
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H = EE%FEE; also used for Hankel function

ilerfc x nth integral of erfc x (see appendix, eq. (A38))

I modified Bessel function of first kind of order n
In Bessel function of first kind of order n
k dynamic target yield stress in shear
K Bingham number, ka_
oM
Kn modified Bessel function of second kind of order n
My mass of projectile
M mass of projectile and plug of plate material of radius a,
M + nahp
n,p integers
r radial distance
r nondimensional radial distance, g
s Laplace transform parameter
SP Struve function of order op
t time
t nondimensional time, ;%t
\ axial velocity
v transform of V

8 angle in plane of target (see fig. 1)



Vo initial velocity of projectile after impact

%% nondimensional velocity
%% éﬁ- nondimensional shear strain rate
W axial displacement
w—X nondimensional displacement
a?vV,
%%»E%; nondimensional shear strain
Yn Bessel function of second kind of order n
7 shear strain, %%
f dynamic coefficient of viscosity
v kinematic coefficient of viscosity, %
o} mass density of plate material
Trg, transverse shear stress
z axial coordinate
Subscripts:
cr critical
P perforation

A dot over a symbol denotes differentiation with respect to time t.
ANATYSTS

Governing Equations

In the present analysis a rigid cylindrical projectile is considered to
impact upon a thin infinite plate. The resulting perforation of the plate by
the projectile is assumed to be a simple shear-plugging perforation in which
only the transverse shear stresses act to resist the inertia of the impacting
projectile. The perforation is also considered to be axially symmetric and the
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shear stress is taken to be constant through
the thickness of the plate. The resulting
deformations w of the plate are then
represented as functions only of the radial
coordinate r and the time +t, both being
independent of the axial coordinate z and
the circumferential coordinate 6. (See
fig. 1(a).) Hence, by taking the sum of the
forces in the axial direction on a circular
ring element of plate material (see

fig. 1(b)), the basic equation of motion

for this simple shear perforation model can

(a) Finite rigid projectile

be written as and infinite plate.
P
P —
S
OTrg +rz _ p82 (1) ey ,/}f
ar T ate bl a? nrdrdg / Ly

assumed to behave like an incompressible,

visco-plastic Bingham solid in which the

deformation accompanying transverse shearing (Wz’é&idr)%r+dﬁw
commences only after the yield strength of °r ’

The plate material considered herein is Eii;} L:\hjl, ///7
'

the material has been reached. (See {b) Circular ring element with
ref. 6.) When the value of the transverse equilibrium forces.

shear stress falls below the yield stress Figure 1.- Geometry and coordi-
of the material (or when the rate of defor- nate system of perforation.

mation becomes equal to zero), visco-

plastic flow ceases and the material is

assumed to be rigid. The relation between the shear strain rate and shearing
stress for the case of simple shear perforation can be written as (see ref. 6)

Bw oW Yy
Trz = KBS Y (sign Se (2a)
or, since the sign gw is always negative in this case,
aw
T -k (2b)
rz Br

where
dynamic viscosity of target material

dynamic yield stress in shear of target material

QE = Ql = shear strain rate



and the relations between the velocity V, axial displacement w, and strain 7,
are
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Substitution of equation (2b) into equation (1) yields the governing linear
differential equation

Yy 1oav 1V 1k
Ztra vt ra (2)

where v is the coefficient of kinematic viscosity. The initial conditions
are taken to be

1}

Vv =0 (t =0, r>a) (%)

V=V (t

i

O, r s a) (5)

where V, 1is the initial velocity of the projectile and plug combination. In
this study V, was determined from the conservation of momentum at the instant
of impact in which the projectile-plug combination is assumed to be rigid and
to act as a unit. Thus

Vo = &5 e (6)
where
2o initial velocity of free projectile
My mass of projectile
M=M + naghp
The boundary conditions are
-Ck+ué-g-¥;-g—z=0 (t >0, r = a) (7N



and

0, T 50) (8)
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where

Method of Solution and Resulting Equations

An analytical solution is obtained in the present paper by Laplace trans-
form technigues similar to the approach used in reference 5. The homogeneous
solution can be written directly in terms of modified Bessel functions. The
particular solution, however, is obtained by utilizing Struve functions of order
zero rather than by the method of variation of parameters used in reference 5.
The solution to the governing differential equation (eq. (3)) and its associated
boundary conditions (egs. (&), (5), (7), and (8)) is discussed in detail in the
appendix. The solutions obtained are "short time" solutions in t corre-
sponding to values of the transform parameter s > J% or t < %é (see

a
appendix) resulting from the use of asymptotic expansions in the transformed
state. It is shown in the appendix that the velocity (eq. (A34)), displacement
(eq. (A37)), shear strain (eq. (A%6)), and shear strain rate (eq. (A35)) can be

expressed in dimensionless form in terms of a dimensionless radius T and a
dimensionless time t as

VV_ =L lerfe I=1 4 bK(1 - H)Eigerfc -1, 16xmifiderre Lol
o ¥F 2t 2ft 2ot
+ Ry [2fT 1 erre T2t 4 ak(1 - B)(E) 21 %erre Tt 4 30kH(T) */ 21 Derpe Tt
ﬂ? 2yt 2t
+ Rp |VT1%erre T2l 4 16K(1 - H)—t-eiuerfc I-1, gutdiferre oY, . ) LK r-1)20 (9)
2 = = = =
2(( 2(t 2t r
- &E 1Perre T 4 k(1 - m)Titerfe Lot 4 16KHER10erfe Lot
aV, T 2t 2(t 2/t
+ Ry 2T 1%erre T=X 4 8(1 - 1)(T) ¥/ 21%rte 21 4 3oxa(E)%/ 21 Terpe T=1
2t 2{t T
+ Rp Witerre ToL 4 16k(1 - myTierre Tt 4 guxEEiBerre T8, L N ¥§:~ ((? -1) 2 o) (10)
— — — or
2t 2t 2T
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and ilerfc is the nth integral of erfc See eq. (A%8).)
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It can be seen from these equations that if the yield strength k is
neglected, that is, if K = 0, the expressions for velocity, displacement,
shear strain, and shear strain rate reduce to expressions identical to those
presented in reference 3. Also in the case of the infinite mass projectile in
which H = 0 (for M = w), the expression given in equation (9) for velocity

is shown to reduce to V = VO at T =1 for all values of <.

Typical examples of the radial distributions of strain and strain rate as
expressed in equations (11) and (12) are shown in figures 2 and 3. Typical
velocity and displacement distributions as given by equations (9) and (10) are
plotted in subsequent figures (figs. 9 and 10).

Separation Criteria

In order to determine the radius of the plug of plate material which is
sheared (or perforated) from the plate upon impact, separation criteria were
established. The criteria are based on the assumption that separation of the
projectile and plug of plate material from the plate occurs when the plate
material can no longer transmit shear stress. If the plate material is con-
sidered viscous, it can transmit high shear stress even though visco-plastic
flow is occurring. This condition of high shear stress and visco-plastic flow
exists immediately.after impact when the strain rate is at a maximum and the

ow
HSr
(See eq. (2b).) The plate material is considered to be highly viscous when the
strain rate is greater than k/u but is considered susceptible to separation
once the strain rate falls below k/u. In other words, the strain-rate

viscous stress is much greater than the yield stress k of the material.
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Figure 2.- Strain as a function of radius for h = 0.25 inch (0.635 cm);
Mp = 3.56 x 1076 slug (51.95 mg); u = 100 5198 (o.u788 EEE);

ft-sec om
= E . =5 sl g .
8o = 3,940 fps (1,201 s), b =5.2 EQ%Q (2.68 ZE?)’ k = 100,000 psi

(68.95 5§§>; a = 0.04688 inch (0.119 cm).
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criterion for separation is assumed to be

v _k
(), - o2

A second criterion deals with the shear strain of the material which at the
moment of impact is zero and increases thereafter. In order for the plug to
separate from the plate, the material not only has to be considered as having a

r
strains as well. The material is assumed to contain large shear strains when
the shear strain exceeds a certain magnitude. The magnitude chosen in this case
is the dynamic value of the ultimate shear strain of the material. Thus, the
second criterion can be written as

_(ow)  _
Tor = (ar>cr =C (1k4)

where Cj 1s the dynamic ultimate strain in shear. (A value of €1 of 0.02

vas assumed in this paper for both aluminum and steel.) For a further discus-
sion of these separation conditions, see references 2 and 3.

sufficiently small strailn rate (éﬁ < %) but also must contain large shear

10
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Figure 3.- Strain rate as a function of radius for h = 2‘% inch
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(0.635 cm); My = 3.56 x 1070 slug (51.9 mg); u = 100 Fiaes
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( T sz); go = 3,940 fps (1;20 S)’ p=5 P 68 . H

k = 100,000 psi <68.95 5E§>; a = 0.04688 inch (0.119 cm).
cm

The radius of separation of the plug material and the time of separation
can most readily be determined by a graphical procedure. In figure 2 1s shown
a typical nondimensional set of curves of strain as a function of radius and
in figure 3 of strain rate as a function of radius for a projectile of mass
3.56 x 10-6 slug (51.95 mg) and initial velocity 3,940 fps (1,201 m/s) impacting
on a 1/4 inch (0.635 cm) thick aluminum plate. (Conversion factors for the
units used herein are given in table I.) A plot of the time parameter T as a

11



function of T can now be obtained for critical strain from figure 2 by con-
structing a horizontal line representing the critical strain (eq. (14)) and
determining the intersections with the strain curves. In a similar manner the
critical strain-rate curve of t as a function of T can be determined from
figure 3. The radius of perforation and the time of separation are then deter-
mined from the intersection of the critical strain and critical strain-rate
curves as plotted in figure L. Thus, for this particular case the radius of
perforation and the time of separation are Tp = 1.7%0 and t = 0.250,
respectively.

TABLE I.- CONVERSION FACTORS FOR UNITS

Parameter U.8. Customary Unit SI system Convers%on factor
Mass slug milligram 6 x 106
ters
Velocit T oe
¥ ps second 0.3048
Length inch centimeter 2.54
Coefficlent of viscosity ib-sec newton-sec 0.004788
££2 centimeter?
Yield strength psi kilonewton 6.895 x 10+
centimeter?
lug ams
Density £ = - grams 0.51
v’ centimeter> 51538

*Multiply value given in U.S. customary unit by conversion factor to obtain equiv-
alent value in SI unit.

LB —
H=1.,187
K-.351

~+

\ ‘

|1

Rl

Figure U4.- Graphical representation for determining perforation
radius and separation time. h = 0.25 inch (0.635 cm);

= 3.56 x 1076 slug (51.95 mg); u = 100 2198 (O'h788 E§E>;

ft-sec em
= 3,940 1,201 B); p = 5.2 5u8 (2 68 &
o = 3,940 fos (1,200 B); o = 5 = £);
k = 100,000 psi (68 95 2> = 0.04688 inch (0.119 cm).
cm
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Note that four regions are indicated in figure 4. In these regions the
predominant material behavior could be described as containing: large strain
rates and large strain (region I); large strain rates and small strain
(region II); small strain rates and small strain (region ITI); and small strain
rates and large strain (region IV). Only in region IV are both critical compo-
nents of the separation criteria satisfied; therefore, it is assumed that only
in this region does separation occur.

EFFECTS OF TARGET-MATERIAL YTEID STRENGTH

ON PERFORATION RADIUS

Expressions are derived in the appendix and presented in the previous sec-
tion for the velocity, displacement, shear strain, and shear strain rate written
in nondimensional form. These expressions contain pertinent parameters associ-
ated with the perforation problem such as projectile mass, initial velocity,
target density, viscosity, yield strength, and thickness. Variations in these
pertinent parameters are now investigated to determine their effects on the
perforation radius. Results are obtained, with the aid of electronic computing
machines, for the present solution which includes the effects of yield strength
and for the simplified solution in which yield strength is neglected (that is,
in which X is set equal to zero in egs. (9), (10), (11), and (12)).

Perforation Radius as a Function of Initial Projectile Velocity

Aluminum plate.- In figure 5 is shown the variation in perforation radius
with initial projectile velocity for a 1/4 inch (0.63%5 cm) thick aluminum plate
being impacted by a 3/64 inch (0.119 cm) radius rigid cylindrical projectile.
The mass of the projectile was taken to be 3.56 X 10-6 slug (51.95 mg),which for
aluminum would correspond to a projectile 0.0642 inch (0.163 cm) long. The

dynamic coefficient of viscosity of the plate is 100 lﬁ%fgg 0.4788 NS\ and the

2
cm
dynamic yield strength 100,000 psi (§8.95 lﬂl). As can be seen from figure 5,

cm2

including material yield strength in the analysis has little effect on the per-
foration radius ?b for the range of velocities shown. (The maximum difference
between the case K # O and the case K = O is of the order of 5 percent.) A
calculation was made for an initial projectile velocity of 778 fps (237 m/s) and
the projectile did not perforate the plate.

Steel plate.- In figure 6 is shown the variation in perforation radius with
initial projectile velocity for a 0.088 inch (0.2235 cm) thick steel plate being
impacted by a 5/6h inch (0.119 cm) radius rigid cylindrical projectile. The
mass of the projectile was taken to be identical to the mass of the projectile

impacting the aluminum target (5.56 X lO’6 slug; 51.95 mg). The dynamic coeffi-

cient of viscosity of the steel plate is 300 lﬁ:ﬁ%& (l.h§6u lﬁ%) and the dynamic
ft cm

yield strength 200,000 psi (157.9 j@%). Note that the weight per unit area of
om

15
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Figure 5.- Radius of perforation as a function of initial projectile veloclity for aluminum

plate. h = 0.25 inch (0.635 em); My = 3.56 X 1076 slug (51.95 mg); u = 100 }%iEé_
-8€¢C
s
(o.u788 Ne V. o = 5.2 3298 (5 68 —§;>; k = 100,000 psi [68.95 E.\; & = 0.04&88 inch
cm? £t em® cm?
(0.119 cm).

the steel plate is equivalent to the weight per unit area of the aluminum plate.
Thus, the momentum exchange between the impacting projectile and both the steel
and aluminum plates is identical.

As can be seen from figure 6, including material yield strength in the
solution still has little effect on the perforation radius over the range of
velocities shown. (The maximum difference between the case K # 0 and the
case K = 0 1is of the order of 5 percent.) Although steel has a higher yield
strength than aluminum, the critical strain rate, which depends on viscosity as
well as yield strength, is smaller. Hence, the perforation radius in steel is
larger than in aluminum (for the same initial velocities) and separation occurs
after a greater passage of time. At the lower velocity range the prevention of
perforation is again noted as for the aluminum target since for a specific

14



initial projectile velocity of 526 fps (160 m/s) the results of the analysis
indicated no perforation.

e Sl touon [RSIEENA PUCOU
{ el [T [ERISE3 <) 1487 LEDES

P

Tigure 6.~ Radius of perforation as a function of initial projectile velocity for steel

plate. h = 0.088 inch (0.2235 em); M = 3.56 X 1070 slug (51.95 mz); u = 200 fi%zgc
1436 N5 ). o - o1n.768 SR (7,61 €Y, x = 200,000 psi (137.90 L),
cm? 120 emd e

a = 0.04688 inch (0.119 cm).

The effect of including yield strength in the analysis when both solutions
(K =0 and K % 0) yleld perforations has been shown to be insignificant. How-
ever, in the lower velocity ranges the simplified solution for K = O may indi-
cate a perforation whereas the present solution for K # 0 does not. This
result suggests that the present solution be applied in the case of the determi-
nation of minimum plate thicknesses necessary to prevent perforation.

Perforation Radius as a Function of Projectile Mass

and/or Plate Thickness

In figure 7 is shown the effect of varying the thickness of the aluminum
plate or the projectile mass on the nondimensional perforation radius. The
specific 1nitial velocity of the aluminum projectile was taken to be 20,000 fps
(6,096 m/s) and the plate thickness was varied from 0.25 inch (0.635 cm) to

15



2.50 inch (6.3%5 cm), all other parameters being held constant. The increase in
plate thickness decreases the perforation radius and time required for separa-
tion. Including yield strength in the analysis has little effect on the calcu-
lated perforation radili (meximum variation in calculated radii is of the order of
4 percent). Figure 7 also represents the effect of decreasing the mass of the
projectile on the nondimensional perforation radius. If the mass of the aluminum

projectile is decreased from 3.56 x 10-6 slug (51.95 mg) to 0.356 X 106 slug
(5.195 mg) (the radius remaining constant) instead of the plate thickness being
increased from 0.25 inch (0.635 cm) to 2.50 inch (6.35 cm), the calculated re-
sults would have identical plots. This result is due to the fact that the nondi-

mensional parameter H (ratio of twice the mass of the plug directly beneath the

projectile to the sum of the mass of the projectile and the mass of the self-same

plug 2 7 changes in the same proportion with a decrease in M) or an
14—
nta“ph
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Flgure T.- Effect of variation in aluminum plate thickness
and/or projectile mass on perforation radius.

u = 100 SiUE_ (o.u788 EEE); g = 20,000 fps (6,096 n );
cm

ft-sec sec
o =5.2 5198 568 B\ k = 100,000 psi <§8.95 5559;
£t cm cm

a = 0,04688 inch (0.119 cm).
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increase in h. The perforation radius and separation time are thus seen to
decrease with decreasing projectile mass. It is evident from figure T that the
effects of yield strength need not be considered in the calculation of perfora-
tion radii.

Perforation Radius as a Function of Coefficient
of Dynamic Viscosity

The variation in nondimensicnal perforation radii due to changes in the
dynamic coefficient of viscosity is shown in figure 8 for the 3.56 X lO"6 slug
(51.95 mg) projectile impacting on the aluminum plate. A specific velocity of
3,940 fps (1,201 m/s) was chosen and the dynamic coefficient of viscosity was
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Figure 8.- Effect of variation in coefficient of dynamic viscosity on perforation radius.
h = 0.25 inch (0.635 cm); M} = 3.56 X 10-6 slug (51.95 mg); g; = 3,940 fps <1,201 g);

5.2 i%%ﬁ (2-68 -53>; k = 100,000 pei <68.95 555); a = 0,04688 inch (0.119 cm).
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varied from O to 200 lh:§§9 (?.958 Hﬁ—); all other parameters remained constant
ft

Cm2

and are given in figure 8. Although calculations were made for larger values of
u, it was found that the dimensionless separation times were continuing to
increase above 1t = 1/2; and thus these results were not considered valid
because of the “short time" nature of the solution. (See appendix.)

The variation in the coefficlent of viscosity is shown to produce a very
large variation in perforation radii and indicates a definite need for better
evaluation of this coefficient. The inclusion of the yield strength in the
analysis exhibits results for perforation radii as much as 10 percent lower
than the solution neglecting yield strength. However, this variation can be
considered to be negligible in comparison with the variations of fb because of

the lack of accurate knowledge of the coefficient of viscosity (in the present
state of the art) at these high impact velocities.

EFFECTS OF TARGET-MATERIAL YIELD STRENGTH ON

VELOCITIES, DISPLACEMENTS, AND STRESSES

In the previous sections it has been shown that the results for perforation
radii obtained with the inclusion of yleld strength in the analysis differed
little from the results obtained when the yield strength was neglected. The
calculations of the strain and strain rates are little affected by the inclu-
sion of yield-strength terms and result in similar curves when plotted as a
function of plate radii. The velocities, displacements, and stresses of the
solution containing yield strength, however, are at times markedly different
from the solution in which yield strength is neglected.

Velocities and Displacements

In figure 9 are shown the velocities and displacements plotted as a func-
tion of the plate radius for various times after impact. The pertinent param-
eters of the problem are those of the aluminum plate discussed earlier and are
given in figure 9. (The strain and strain-rate distributions are given in
figures 2 and 3 for K # 0.) The specific initial velocity of the projectile
is taken to be 3,940 fps (1,201 m/s). In figures 9(a) and 9(c) the results are
shown for the solution neglecting yield strength whereas figures 9(v) and 9(d)
show the results obtained by including yield strength. It can be seen that the
two solutions begin to differ immediately and increase in variance with
increasing time. The solution neglecting yield strength possesses no rigid
region since BV/ar never reaches zero (except at infinity), and the material
remains visco-plastic everywhere. Note also, since dV/Or is never zero,

Tpg 1S5 always greater than the yield stress (which in this case is zero) and

equation (2b) for Tpg 1is valid everywhere. The solution including yield

strength, however, develops rigid and visco-plastic regions which are time
dependent. A Bingham solid becomes rigid when OV/Or vanishes (see ref. 6,
p. 138) and JdV/dr vanishes at finite distances from the point of impact when
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(a) Velocity as a function of radius for K = O.

Figure 9.- Velocity and displacement as a function of radius for
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the yield strength is included in the analysis. The second boundary condition
(eq. (8)) states that as r —»®, V 0. Hence, when OV/dr vanishes at a
point the velocity must remain constant, and for the condition at infinity to
be satisfied this constant must be zero; therefore, the rigid region possesses
zero velocity. Consequently, it is concluded that when either the velocity or
BV/Br vanishes, the material is considered rigid.

Comparison of the velocities with and without yield strength (figs. 9(a)
and 9(b)) indicates a much greater velocity decrease with time when the yield
strength is included. Similarly, the displacements (figs. 9(c) and 9(d)) cal-
culated from an analysis including yield strength are much less than those
obtained when yield strength is neglected.
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(c) Displacement as a function of radius for K = 0.
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i i K = .351

(d) Displacement as a function of radius for K = 0.351.

Figure 9.- Concluded.
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If the projectile mass is decreased to one-tenth its value (or the plate
thickness is increased tenfold) and the perforation radius is evaluated, it is
found that the projectile fails to perforate the plate. The results of such a
decrease in projectile mass (or increase in plate thickness) are shown in fig-
ure 10 for the aluminum plate. Again, figures 10(a) and 10(c) show results
obtained by neglecting yield strength whereas figures 10(b) and 10(d) show
results obtained by including yield strength.

Note that the solution including yield strength possesses both a visco-
plastic region and a rigid region, whereas for K = O, the rigid region has
retreated to infinity. Also note that when the yield strength is neglected,
the velocity at T = 1 approaches a limit as time increases but does not drop
to zero. However, when the yield strength is included (see fig. 10(b)), the
velocity drops to zero for all T and the material is considered rigid every-
where and successfully stops the projectile. The displacements at this point
(fig. 10(d)) indicate a definite bulge. The effects of yield strength in
general again indicate much greater wvelocity decreases and much smaller dis-
placements than when the yield strength is neglected.
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Figure 10.- Contlnued.
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Figure 10.- Concluded.

N 1 . o
| _ i
H = 1.872
T k= 2206
o8- ot -t
i i .
L06f— J L B . . -
Toisa | , | L
\ - - - ,,;#,,A,,,,.,“
| No/ie R 77 N T
\ e na L]
.04} \ cfm . —
NEENA
Nes] YN ‘
HERNIEAN ] B
|| \ ie \ \ —_ :
.02 B ; X - A
LN R |
— 4 | ™ —
F/':/m? : ey - ™. \i\\ 4 7 Lo ju ‘ -
™~ AN '
. 4,,,,\\< .. . 4,,*,,$ - | - L
0 | e I M~ l
1.0 .2 - 1.4 |
(d) Displacement as a function of radius for X = 2.226.

25



26

\(K=.55I o ) I N
d= o 1 - - - . ,\ U D —
: | H=(.187
i -1 - B . e
o - ‘\\ I L | ,
; . S S I I
] !
.7 ot - - —
Perforation occurs
i 4 . -
o N L : 1 L
Coe N ‘
T N ]
—trz Ty !
K Vo \ L -
- =
.4 - -
IV perforation [ 1 B ‘
| - N 1 ) .
- H\ | - 4 o —
3 ll\\ O O N S L
1l i R . . I ,
!
- i B S - -
1! :
11 .
Y : I A S i
- e e N S 1) T — Rl o -
:I
J— § ;- 4 4 PO S -
HEEENE L
i N
K N
et { N R -
. oo \ ,ﬁ
|
|
I N nh 11
; N - \\\\ [— o
| i \\\\L_
0 L (| ! —
(.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3 4.

Rl

Figure 11.- Shear stress as a function of radius at time of perforation
t =0.25 for K=0 and K =0.351. h = 0.25 inch (0.635 cm);

- -6 .y - sl Ns \,
My = 3.56 x 107 slug (51.95 mg); p = 100 o€ (o.u788 cm2>,

1
go = 3,940 fps (1,201 g), p=5.22 ;‘g (2.68 i); K = 100,000 psi
£t em

(68.95 1‘—"5) a = 0.04688 inch (0.119 cm).
cm




Stresses

When the radial distribution of shear stresses present in the plate after
impact are computed from the analysis with and without yield strength, it is
obvious from equation (2b) that they will differ. In fact, the variance at the
time and radius of perforation is approximately 2 to 1. 1In figure 11 is shown
a distribution of shear stress computed at the dimensionless time of t =0.25
(calculated separation times are actually T = 0.24 for K =0 and t = 0.23
for K # 0) for a 1/4 inch (0.6%5 cm) aluminum plate. The initial projectile
velocity was taken to be 3,940 fps (1,201 m/s) and the radius of perforation at
separation is indicated by the dashed lines in figure 11. As can be seen from
figure 11, the shearing stresses occurring at the radius of perforation computed
by use of the two different solutions differ by a ratio of about 2 to 1.

CONCLUDING REMARKS

It has been shown in the present paper that the inclusion of target-
material yield strength in a one-dimensional analysis of hypervelocity impact
perforations has produced little effect on the resulting perforation radii.
The variation in calculated perforation radii as compared with the solution
neglecting target yield strength amounts to only 5 percent. This percent dif-
ference in calculated perforation radii remains at the negligible S-percent
level even with variations in the pertinent parameters such as plate (or target)
thickness, projectile mass, and initial velocity. With variations in the
dynamic coefficient of viscosity, the difference does increase to perhaps
10 percent but the variations in perforation radius due to 'differences in the
assumed value of the viscosity coefficient alone are much greater than the
10 percent present when yleld strength is neglected. 1In fact, the determina-
tion of accurate values for the dynamic coefficient of viscosity is much more
critical in the calculation of perforation radii than is the inclusion of the
target yield strength.

In the determination of the minimum thickness of plate necessary for pre-
vention of perforation, however, the effect of yield strength may be important
depending on the initial velocity and mass of the projectile, and the present
analysis containing yield strength should be applied. Furthermore, parametric
studies in which not only the initial projectile velocity is varied but also the
thickness of the plate and the mass of the projectile could provide pertinent
data as to minimum thicknesses of target material needed to prevent perforations.

The velocities, displacements, and stresses can be markedly different in
the resulting calculations for hypervelocity impact depending upon whether
target yield strength has been included in the analysis or not. The effects
of yield strength in general are to produce much greater velocity decreases
and much smaller displacements than those obtained when the yield strength
is neglected. In fact, for the particular case where the projectiles do not
perforate the target plate, the analysis including yield strength indicates
that the velocity drops to zero and the plate is deformed, whereas if the yield

27



strength is neglected, the velocity only approaches a limiting value, which is
not zeroc. Thus, for this particular case, the velocities, displacements, and
stresses calculated by using the simplified solution may be grossly in error.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., September 30, 1964.
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APPENDIX
GOVERNING EQUATION OF SHFEAR PERFORATION

An analytical solution is presented for the governing linear differential
equation and its associated boundary conditions. In a manner similar to that
employed by Chou in reference 3, the governing partial differential equation is
reduced to a total differential equation by use of Laplace transform techniques.
To obtain a particular solution to the resulting total differential equation, a
further change in variables becomes necessary. After satisfying the associated
boundary conditions, a "short time" solution is determined by employing asymp-
totic approximations in the transformed state.

The governing linear differential equation of motion in the axial direc-
tion, for simple shear perforation, as derived in the text (see eq. (3)) can bve
written as

OV 1V 1 _1lk
Pt Fax v rTa (A1)

Q/

Transforming equation (Al) with respect to t by use of Laplace transform
techniques results in

v , 147 7 _lxk
£+Fd-?—%[sV —V(O,I‘)] —Fu'—s (Az)

where s 1is the transform parameter. By use of the Initial condition
(eq. (4)) v(o,r) =0 at t =0, r >a, equation (A2) is reduced to

2— —~— ——
d=y 1 4dv sV 1l k
— et = e - === N — A
e rE-g-is (83)
Let
r = -iZ (Al)
J’é
v
Hence
& _avy [s
& = 5|5 (A5)
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A& _ _‘ﬁ s (A6)
dr2 ~ dzl v

and by substitution of these relations into equation (A3) there results

o T - .
av  1dv v .di k. (A7)
az2 z dz \/E Hsz

Y
The homogeneous solution for \7(2) can be written directly as

For the particular solution to equation (A7) the Struve function of zero order
is satisfactory. A known relation for the Struve function of order p is
(see ref. 7, p. 211)

a%5y(z) 1 dsp(z) 2 Ol
z 2
die M (l ) §2>SP(Z) " il - 0.5): )
Let p = 0; then
a®sy(z) 1 dSy(z) 2
w2 Tz az Solz) = 72 (a10)

Hence, the particular solution to equation (A7) for V(z) can be written as

Vp(2) =-2"i 80(2) (a11)

<l

and the general solution becomes

V(Z) = ‘_J:H(Z) + \—IP(Z) = AJo(Z) + BYo(Z) - ik So(z) (Al?)
2 [Eus
14

or resubstituting for z from equation (Al)

V(r,s) = AJO(ir J§> + BYO(ir E) - —it-i-k—so(ir \/%_) (A13)

2\[-§ps
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In order to apply the (transformed) boundary condition given by equa-

tion (8), namely, V = O as r — o, one must consider the asymptotic behavior
of the solution as given by equation (Al3) for |r] >> 1. The asymptotic
approximation for the Struve function of order zero as found in equation (136a)
of reference 8 is

soér J:) ~ YQ(ir F) + ﬂ_a_ﬁ (A1k)

and since a known identity between the Bessel functions is (see eq. (llO) of
ref. 8)
s) .1y s 5
Ko<r J—V:> = 21E:0(I‘ J:) + iYo<iI' J:>] (Al5)

then

X 2
Tir J;'

Hence, for |r| >> 1, the general solution can be written as

Tere =l ) 2l 5) -l )

+ ___f.rli_IO(r ﬁ) + .&.KOG %) - "'kE' (ALT)

Application of the transformed boundary condition V = 0 as T —w (see
eq. (8)) yields the relation

A= -Bi - —Z&_ (18)

since Ky - 0 and Inp 2o as 1 — o, Use of the known identities between

reduces the general solution to
V(r,s) = —B%K()(r J%-) - —"-12-—10<r J%-) - —-’ik—so<1r E) (A19)
S S
2 \Eus 2 [Sus
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Application of the (transformed) boundary condition (see eq. (7); note also
2q. (5))

7 - C,u% + Cl_sc_ =V, (r = a, t>0) (A20)

permits the evaluation of the quantity B. Substitution of equation (A19) into
equation (A20) and use of equation (140a) of reference 8 yield the following
expression for B:

Vo - —“}‘E—Io<a ﬁ-)- So(ia €>Lik-€ + gg-%ll% Jg) - g%[f-[ - Sl<ia J%)] +
2 2u |2
B = (a21)

losofo ) + o e )

Hence, the general solution can be written as

- {o + 2ﬂ\}(§ulo<a J§> ; so<ia @i&ﬁ - 2%11% f—) + cg‘{% -5 (m Jg)] - Cg} Ko(r E)
= )+ o fBae )

- Tk PIO(I' ﬁ) - Soér E—) xik (n22)
2us \F;- 2us J_%

A "short time" solution is now determined from the general solution by
assuming a.J% > 1. By reference again to equation (1%6a) of reference 8, it

can be shown that

1 Qi.a E) ~ Yp (ia ﬁ) re. ﬁag s (a23)
1%

A known identity between the modified Bessel function of the second kind(of
order one K] and the Hankel function of the first kind of order one Hll) is

(see eqs. (115) and (70) of ref. 8)
Kl<a J%) = - ngl) (ia E) = -%El <ia J%) + 1Y) <ia @H (A24)
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Hence

Q|

8
v

) = 1Yy <ia @) - &, (a \E) (A25)

Jl (ia

and since

I, (a J%) = 13 (ia E) (A26)

then, from equation (A25)

Iy (a J-%) = -Yl<ia @) + %%—Kl(a %) (A27)

Thus,

Substitution of the asymptotic expressions for 8p and % - 51 into the

general solution (eq. (A22)) and making use of the identity for Yo (eq. (A1l5))
yield

<|wn

(vo + akﬁ - Ky ga—g;’—2>xo<r ﬁ) L
sKo<a Jg) + fu J—%Kl(a Jg) ps?r

Note that for increased accuracy in equation (A29), it is only necessary
to increase the number of terms taken in the asymptotlic expansions of Sn and
S1; of course, the semiconvergent nature of the asymptotic expansions must be
consldered. These additional terms are polynomials and would not present any
new difficulties. To aid in determining the inverse transform of equa-
tion {A29), the following asymptotic expansions of the modified Bessel func-
tions Ky, K} are employed (see eq. (114) of ref. 8)

(A29)

V(r,s) =

_ [ -z(7 _ 1 9 \)
KO(Z) = (2 (1 B + ——12822 + . . )
> (A30)
= |Ze-2 2 13
Kl(z) = §Ee (} + Bz~ To8.2 + .. .)
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Substitution of the asymptotic expansions given in equation (A%0) into equa-
tion (A29) yields after algebraic manipulation:

él-_%(r_a)v 1 1.k 1
7 - (& o, Lk _ Lrky Y LN - LN o W
OO A R R e A
v

+ 9a2-2ar—7r2+tga_—_5_11 +§2£—l—+... - K (A31)
128a°r? v 8ra ve % pser

and by application of standard transform tables (ref. 9, p. 380, formulas (11))
V Dbecomes

1/2 r
V(r,t) =V 5‘-/ erfc L =& 4 r'a—gu—a-g—ﬂierfcu
? O\r v/ a

2 vt 8r ofvt
2 _ - 2 _ 2,2
+ (22 car - Tr® . Q-uva- a - or + QE urat vt 2 pr m 8
128r2 8r ve / g2 2yvt

+

1 al/2 2 r -a r -a ua\ yv 3/2.% r - a
k(p—a - g)(;> ‘}ti erfe Py + < 5 " CT)'aT(b't) i“erfc E\[v:t_

(9&2 - 2ar - Trc L or . §2 p222>l6vt2iuerfc r-a
12872 v 8r V2 ) e? ofvt

+

_191_(.’51)1/2 l}6t214erfc r-2., (r 2 - QE)E(ht)5/2i5erfc -2
2\r v/a

pa Ut 8r 2 \[v_t

2Jvt

+ <9a2 - car - 7r2 + Cu—a- a_ 2 2T + ?;2 __u2a2 -2—61+t5i6erfc r-s e kt
10812 v 8r 2 Ja? o\vt er

((r-a)z0) (a32)

where the symbol 1P denotes the nth integral of the complementary error
function.
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Equation (A32) can now be nondimensionalized as follows:

Let
- r )
Y = —-
a
Tout
t = "
(A33)
a 21ra2hp
H = gv = i
K = \.llié_
ot y
Hence, the nondimensional velocity can be written as
VV_ = L {erfe T2 4 4K(1 - H)tierfe T -1l 16kHERiYerre L2 =
°© r 2% 2t o
+ Ry [Eﬁl erfc r-1i, 8K(1 - H)€5/Ei5erfc r-1, 52}6{55/2i5erfc T -_l]
2Vt o\ 2\t
+ Ro E&Eieerfc T -1, 16k(1 - B)T2ilerre ToL 4 glkutdiberfc Lo 1]. AR <
2t 2yt ot r
(F-nzo0 (A%h)
where
1 1
Ry = = -~ _ - H
17876
9 1 I 1 5) )
Rp = - == - + H= -]+ H
2" oo Gir 128 \Br B

By comparison of equations (A%1) and (A%2), it can be shown that s 1s related

to l/ht and that aJs/v > 1 implies t < 1/4. Nevertheless, calculations
indicate that the three-term asymptotic series presented in equation (A%0) are

only approximately 10 to 15 percent in error for t = 1/2 (and a s/v = l/d@).
Therefore, results are presented in this paper for values of t as high as 1/2.

Results for t > 1/2 should be viewed with increasing skepticism. Differentia-
tion of equation (A34) with respect to T yields the nondimensional shear
strain rate
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(712
N a _ 1 1 o g E-1,,% ¥-1
————— 2. 5 erfe =L + 2/T[Ry - K(1 - B)]1 errc T
Br Vo J% 1t 2E 2J—t_
+ ¥E[Rs + K(1 - H)R3]1%erfc r-1, 8(?)5/2@(1 - H)Ry - KH[13 erfe r-1
eﬁ 2{t
+ 16%'2[1(335 + K(1 - H)Rg] sherre T =1 4 52(T)5/2kmRy 15erre T =
2\t 2\t
+ 6’+7c—§ICHR5i6erfc -1, .\ % (('f -1) 2 o) (A%5)
oft 3
where
1
R = -i - =+ H
> "8 8

15 3 .7 Ef5 2
Ry, = - + =2+ 5) -H
b e G 128 8(? 5)

I S ( +_H_(2_z i

R5=

By integration of equation (A35) with respect to E, the nondimensional shear
strain is obtained

LA S erch'l+R12erch'l+2\{fR)+-K(l-H) 1derfc L= 1
o Ve 7\ o o ot E ) 2t

+ W[Rs + K(1 - H)R3] iterfe T =L + 8(%) 5/2[1{(1 - B)Ry, - KH]ierfe r-1

ofE 2t

+ 1682 [KiR5 + K(1 - H)Rd] 16erre T=L 4 3p(%)5/%kmr) 1 Terre T=L
oyt 2\t
= =2
+ 64ExERg18erre o2, | ) 4 KB (F-120) (as%)
2\]’5_ ore
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A second integration with respect to T would determine the corresponding dis-
placement. However, a simpler approach is to integrate the nondimensional
velocity with respect to t to obtain the nondimensional displacement

w_‘j_—z.l&i

5 2erfre =1 4 UK(1 - H)Eih’erfc r-1, 16kuERiberfe Lo
aVo \F ot 2(t 2

+ Rll:zﬁi%rfc L1, 6(1 -8 (£)3/210erfe T=L 4 sok(T) 2 21 Teree LL]

2(% o\T 2T
- T - = = 2
+ RQ[}tiuerfc r-1, 16K(1 - H)TFi6erfc T=2 + 6hxnt18erfc L f_i}. LN - %%;
2t 21t 2it

((F-1) 20) (A37)

The symbol {Nerfc x represents the repeated nth integrals of the complementary
error function erfc ¢

[oe]
iBerfe x = b/\ i leree £ de (A38)

X

in which

iYerfe x = erfc x

- 2
i lerfc X 27X

i

and x(&) 1is the argument of the complementary error function. A recurrence
relation useful in determining the repeated integrals of the complementary error
function is (see refs. 8 and 9)

n-2 ‘n-1
iNerfe x = & erfe x ;n2x1 erfc x (A39)

A table of the error function and its derivatives and integrals for values of
the argument between O and 3.0 is presented in reference 9 from values given in
reference 10. A similar table has been included in this paper, with slight
extensions, for convenience in computing these expressions. (See table II.) A
table of the first 11 repeated integrals of the error function with values of
the argument between O and 2.80 is also available. (see ref. 11.)
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TABLE II.- FIRST EIGHT REPFATED INTEGRALS OF THE COMPLEMENTARY ERROR FUNCTION

X erf' x erfe x i erfec x igerfc x iBerfc X il‘erfc X Serfe x i6erfc X iTerfe x i8erfc X
0.00 | 1.12837910 | 1.00000000 | 0.56418955 | 0.25000000 | 0.05403159 | 0.03125000 | 0.C0940315 | 0.00260416 | 0.00067165 | 0.00016276
.05 | 1.12556170 | .94%62802 | .51559945 | .223%01702 | 08221629 | .0268Loks | 00795313 | .00217117 | .0005525T | .00013%224
.10 | 1.11715160 | .88753708 | 46982210 | 19839317 | .0OT16905T7 { .02300688 | .00670892 | .00180542 | 00045341 | .00010717
L1511 1.10327%10 | 83200403 | 42683645 | 17598827 | .06233999 | .01966078 | .0056%L1T | .00149729 | .0COTTIOT | .00008662
.20 | 1.08413h70 | LT777297HL | 38660787 | 15566357 | .05405707 | .01675509 | 00473550 | .0012384%0 | 00070286 | .00006982
.25 1.06001410 | 72267361 . 34508865 .13728232 Mol Ty RN . 01423896 .00396217 | .00102148 L00024653 |, 00005613
.30 1.03126090 | 67137324 | .31421848 | 12071054 | .0h029869 [ .01206641 | .00330588 | .0008402k { .00020012 | .0000L50L
S350 99828371 | .6206179% | .28192557 | .10581751 | .0346Le2l | .01019599 | .00275050 | .00068922 | .0001520G | 00002598
4o . 96154130 .57160765 . 25212759 L09247640 | . 02969107 . 00859044 .00228187 | .0005637) .0001%077 | . 00002869
L4510 092153201 | .52451828 | 22473278 | .0BOSGLTO | .0253707% | .00721637 | 00188760 | .000LSOTY | .000L0E2T | .00002281
.50 87878258 | 47950012 | .1996%123 | 06996473 | 02161275 | 00604399 | .00155687 | .00037392 | .00008449 | 00001808
2551 83383665 | 43667603 | L176THE1B | L06056396 | 01835430 | .0050UETT | .00128028 | .000%0%20 | 00006762 | .000014 %0
<60 | 78724343 | L3961M39L | .15993537 | .052255% | .01553815 | .00420119 | .0010LGAT | 00024513 | .00005396 | .0000LL2T
L65| LT395H6T6 | Z5TITOET | .137092k5 | LOkLG3TE2 | .01311225 | .00348646 | 00085798 | .00019758 | .0000L293 | 00000886
L7011 .69127486 | .32216881 | .12009827 | .0%51530 | .01102947 | 00288425 | 00069915 | .00015878 | .00003406 | .0000069
LTS .6L293107 . 28884356 L1048%279 | .03289861 . 00924747 L002%784k2 | 00056798 | .00012720 | .00002604 . 00000542
.80 .59498579 . 2578990L .091173%66 .02800529 | .00T772753 L 00195515 .000k5992 . 00010160 . 00002123 , 00000k22
.85 | .oWT869T72 | L2293%3104 | .OT900272 | .02375682 | .00643601 | 0016019k | 00037127 | .00008089 | .00001669 | .00000%28
.90 | .5019685T7 | .20%09179 | 06820167 | .02008219 | 00534228 | .00130826 | 00029874 | .00006421 | .00001%08 | .0000025k
2951 JbWsT6192% | L17910919 | .05865589 [ 01691575 | .00LL1932 | 00106487 | .00023960 | .00005080 | .0000LGI2 | .00000L96
1,00} 41510750 | .15729921 | .0502545h | .01419753 | .003h4324 | 00086388 | 00019154 | .0000L0OG | .00000TYS | .0O000OLE0
1.0 | .3%647960 | 11979493 | .0%6L6538 | .00989277 | 00245021 | .00056278 | .00012120 | .00002467 | .0000CLTT | 00000088
1.20 | .26734h%5 | .0B968602 | .02604895 | .00679213 | .00162463 | 00036162 | 00007567 | 00001500 | .0000028% | . 00000051
1.301 .20820799 | .06599206 | 01831432 | ,00459370 | .00106178 | .00022913 | .0000LGG0 | .00000899 | .00000LES | . 00000029
1.403 15894171 | .O4T71488 | 01267002 | .00305970 | .00068380 | .000143%12 | 00002830 | .000005%2 | .000C00% | 00000016
1.50 1 .1189%029 | .03389485 | .00862287 | .00200656 | .00043386 | 00008812 | .00001695 | .00000310 | .0000COSL | . 00000009
1.60] .08722906 | .02%5162 | .00577193 | .00129535 | .00027113 [ .00005346 | .00001000 | .00000LTS | 00000030 | .0CO0000%
1.70} .0627110% | .01620954 | .00379930 | .00082297 ! .00C16686 | 00003195 | .00000582 | .00000101 | .00000016 | .00000002
1.80 | .04419172 | .01090950 | .CO2L5876 | .00051k4kg | .00010109 | 00001881 | .0C0003%3 | .00000056 | .000CO009 | .0C00000L
1.90 | .03052hTh | .00T20957 | .00156418 | .00031641 | .00006030 | 00001090 | .0C0000188 | .000COO3L | .0000000L | .00000000
2.00 | .02066699 | .OOKGTTTH | .00097801 | .000191k2 | 00003538 | .00000623 | .0000010K | 00000017 | .00000002 | .00C00000
2.10| .0137155 | .00297947 | .00060093 | .00011388 | .00002043 | .00000350 | 00000057 | .00000009 | .0O00000L | .00000000
2.20| .00892216 | .00186285 | .00036281 | .00006662 | .00001161 | .000001GL | 00000030 | .00000004k | .00000000 | . 00000000
2.30 | .00568902 | .0011Lk318 | .00021519 | .0000383L | .00000648 | .00000105 | 00000016 | .0000C00Z | .00000000 | . 00000000
2.40 | .00355565 | 00068851 | .00012540 | .0000216% | .00000358 | .00000055 | .0000C00S | 00000000 | 00000000 | - .00000000
2.50 | .00217828 | .00040695 | .0000TL76 | .00001203 | .0OOOOL93 | .00000029 | .0000000k | .00000000 | .00000000 | -.00000000
2.60 | .00130805 | .00023603 | .0000LOZ% | .00000655 | .0000010k | .0000001L | .00000003 | -.00000000 | .000C0000 | -.00000000
2,701 .00076992 | .00013433 | 00002226 | .00000351 | 00000054 | .00000Q07 | .O0000O0L | -.00000000 | 00000000 | -. 00000000
2.80 | .000kLL21 | .00COTS01 | 00001207 | .00000184 | .00000029 | .00000002 | 00000001 |-.00000000 | .00000000 | -.00000000
2.90 { .00025121 | .0000L110 | .OOOCO6HL | .000000YT | .00000012 | .00000002 {-.00000000 | .00000000 | -.00000000 | .00000000
3.00 1 .00013925 | .00002209 | .000003%5 | 00000049 | .0000000E | .00000000 | 00000000 | .000000C0 | .0000C0O00 | -. 00000000
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